Analytics for Asset Integrity Management in Wind farms (AIMWind) : Low-cost solutions for turbine structural health monitoring

Postdoctoral Research Fellow Christos S. Sakaris NORCE Norwegian Research Centre csak@norceresearch.no

Senior Researcher Rune Schlanbusch **NORCE Norwegian Research Centre** rusc@norceresearch.no

Importance of Structural Health Monitoring (SHM)

Damage \rightarrow alteration the structure's performance \rightarrow dire consequences for structure's integrity & human safety \rightarrow SHM being important

SHM levels

• • Level 1: Damage detection

damage

Level 2: Damage localization

Level 3: Damage quantification
Level 4: Remaining useful life (RUL) estimation

Fundamental principle of vibration based SHM methods

healthy

damaged

Vibration-based damage diagnosis and prognosis under varying EOCs

Treatment of damage detection as a classification problem through the Multiple Model (MM) - AutoRegressive with eXogenous input (ARX) method [1], the Principal Component Analysis (PCA)-MM-ARX method [1] and the Functional Model Based Method (FMBM) [2]

Treatment of damage prognosis as a classification problem through the FMBM

Fatigue analysis for obtaining the:

Remaining Useful Life (RUL) of the structure for known damage states (location and magnitude) under varying EOCs

Inspection (online) phase of FMBM Baseline (training) phase of FMBM Classification of the Unknown FM identified based detected damage to Damage precise localization & detected on the known precise quantification based on FM one of the known damage damage states damage states

References

[1] Vamvoudakis SKJ, Sakellariou JS et al., Vibration-based damage detection for nominally identical structures: Unsupervised multiple model (MM) statistical time series type methods. Mechanical Systems and *Signal Processing*. 2018; 111:149-71.

[2] Sakaris CS, Bashir M, Sakellariou JS, et al., Structural health monitoring of tendons in a multibody floating offshore wind turbine under varying environmental and operating conditions. Renewable Energy. 2021; 179:1897-914.